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PRELIMINARY DESIGN PROCEDURES FOR SUPPRESSIVE SHIELDS

L. INTRODUCTION.

Suppressive shields are steel structures designed to contain the hazardous effects resulting
from detonation or deflagration of high explosive (HE) and pyrotechnic charges. These designs use
vented walls to minimize structural loading. (The effective open area may be very small in some
designs compared to the total wall area, i.e., 0.2%).

Shield groups have been developed to provide a full spectrum of protection for hazardous
manufacturing operations in ammunition plants. These shields totally contain fragments and
significantly reduce the external overpressure and/or thermal threat. The shield groups are superior
to the conventional concrete barricades because of advantages such as increased safety and a
reduction in size, weight, and cost for the majority of applications.

The purpose of this report is to provide a consolidated reference source for making quick,
approximate shield designs. Where practical, the required tables and graphs are included, and all
equations are referenced. Example problems are provided to prevent confusion concerning units.

Section II discusses and summarizes the Hopkinson scaling laws which is an important
tool in the development of suppressive shielding technology. Testing of scaled models represents a
tremendous cost savings by yielding data which can be related to full-scale designs.

Section III presents step-by-step methods for calculating blast loads and blowdown time.
Also, it presents the Fano equation for equivalent charge weight as a function of actual charge and
casing weight.

Section IV covers the response of structural members to dynamic loads, including
dynamic shear. The members analyzed are typically those found in the 1/4-scale shield group I
structure, i.e., beams and rings. Newmark’s equivalent stiffness technique, which is used in this
handbook, is a simple method that yields good results.

Section V presents a step-by-step method for calculating blast pressure external to the
shield. This section is primarily based on work done by the Southwest Research Institute.

Section VI discusses the fragment hazard and gives a method for calculating penetration
depths of primary fragments. It also discusses the secondary fragment hazard.

Section VII describes each shield group. It gives the major data of each shield: physical
dimensions, weight, unit cost (man-hours), charge weight, design blast loading and test results,
fragment stopping protection, and effective vent area.

A list of all suppressive-shield-related references is given in the selected references.

An index of symbols are in the glossary.

I1. SCALING LAWS.

For a full-scale blast situation, where W is the charge weight and R is the distance from
the center of the explosive source, the system may be scaled down (or up) according to certain
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scaling laws. For example, let W; = 100 Ib and R = 20 ft as shown:

e——— R, - 20'——;?
/
/

—»{  j&— t, = WALL THICKNESS

In orderto simulate an experiment with a half-scale model of this system (i.e., Ry = 10 ft),
W5 must be determined as shown:

j¢——R, = 10’

©,

> | ™,

The Hogkinson scaling law defines the scaled distance Z = R/WI/ 3. ForeachZa unique
set of R and W!/3 values exists and the blast pressure will be the same for any combination of R
and W1/3 whose ratio yields the same Z value. In the example:

, - R 20 i
= W 178 = og)I73 = 431 filb

o \3 \3

R R 10

setting w_?'”3=4.31 yields W2 =(4—§'l)= (ﬁ) = 125 1b
2 : ;

Therefore, the peak blast pressure from a 12.5-Ib charge at 10 ft will be the same as that
from a 100-Ib charge 20 ft away.

It is important to note in the above example that although the peak blast pressure is the
same in both models, the duration of the blast load and, hence, the loading impulses are different.
Time is directly proportional to the scale factor as demonstrated below:

T, T,
1/3 = 1
W, / W, /3




Therefore, the reflected impulse loading is one-half as much on the scale model even
though the peak blast pressures are the same.

A summary of the scaling laws is as follows (Ref 81):
Scaling Relationships

(1) Z =\_V!137§ = constant

(2) W:{B = constant, where T = time

I
(3) ﬁ? = constant, where I = reflected impulse

(4) (Pgg)) = (Pgg)y, Where Py = side-on overpressure
(5) (Pg)q =(Pg)p where Py = reflected pressure
(6) (PQS)I = (PQS)Z"‘, where PQS = quasi-static pressure.
In order to model the structural response, structural members in a suppressive shield must
be scaled as well as the overall dimensions of the structure. (That is, members in a 1/4-scale model
must have a similar shape but be 1/4 the size). A properly scaled structure and charge weight will

provide the same stresses and strains that would be experienced in the full-scale structure.

I1I. BLAST LOADING CALCULATIONS.

A. Parameters.

Quasi-static pressure, PQS’ is the pressure inside a partially or completely confined
structure which develops from the combustion of gases produced by detonation products and heat
generated by blast wave reflections.

Peak positive incident or side-on pressure, Pgq, is the abrupt pressure increase from
ambient caused by the blast wave.

Peak positive reflected pressure, Pg, is the pressure produced at the shield wall by the
blast wave which lasts for the duration of the wave, ty. Although t; decays exponentially, it is
usually approximated by a triangular pulse. Reflected impulse, Iy, is the impulse associated with a
completely reflected incident wave and has units of pressure-time. For a triangular pulse, Ig is
simply the area under the curve, as shown:

PR
Ip = 1/2 t4 P

ty

*This will be true as long as the ratio of the charge weight-to-volume remains constant.




Parametric calculations in this section are based on centrally located bare spherical charges.

B. Explosive Materials Equivalency.

Blast wave parameters from different explosives can be approximated by comparison with
an equivalent weight of some standard explosive, usually, TNT. The ratio of the weight of TNT to
that of a given explosive which produces the same effect is given in table 1 for both peak pressure
and impulse. For example, 1.1 1b of TNT is required to produce the same side-on blast pressure as
would 1 Ib of Comp B.

Table 1. Equivalent Weight Ratios for Free-Air Effects

Matersial Peak ;nnure Impulse 1,
A e T 1.09 1.07
Comp B 1.10 1.06
Comp B/TiH, (70/30) - - cccceoo. 1.13 1.13
Cyclotol (70/30) - . _ . ... -..__. 1.14 1.09
Explostye 1) O A 0.85 0.81
T T PR U 1.21 1.21
B Rl s e e o L L 1.16 1.25
T A S L RGN PPSPCE SEL. 1.27 1.38
) ET T I Gy mmp gy o oy gy 1.19 | 1.17
Pentolite. ... .. ... ... .. ] 1.17 1.15
T b s e e 0.90 | 0.93
RDX/Wax (98/2)- - -.oooo-... 1.19 | 1.16
RDX/Wax (95/5) - cc. oo aa.- | 1.19 1.16
TNT oo | 1.00 | 1.00
N D o e e 1.13 0.96
Torpex 11___.. : 1.24 | 1.20
Tritonal (80/20) .. I‘ 1.07 | 1.11

C. Cased Charge Equivalent Weight.

Bare charge simulators can be used in shield testing to provide overpressure*
characteristics equivalent to those from cased charges without the adverse effects associated with
fragmentation. The modified Fano equation, below, gives the equivalent charge weight as a function
of actual charge (Refs 20 and 87).

For 2
' (M/W)
W <O0. W = ——
M/ 53, w l} aO+M /W)]
For 0.53
0.53 <M/W "= W|o. +-———7—. -
5 M/W , W |E]47 M W):,
Where
W' = Effective charge weight, 1b
W = Weight of explosive in munition, 1b
M = Metal weight, 1b

These equations are shown graphically in figure 1.

*Fano equivalency does not apply to quasi-static pressure.
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Figure 1. Fano Equivalent Weight Ratio




Example (Fano equivalent charge weight)

Simulate an 81-mm mortar explosion in a suppressive shield without damaging the shield ‘

with fragmentation;i.e., use a bare charge with a Fano effective weight.

W = 2.1 b of explosives in the mortar
M = 3.818 1b case weight
M/W = 1.82or
' _ 0.53
W = W[0.47 +———(l +M/W)]

i

2.11047+_0.53 |=
[ m] 1.38 1b

D. Quasi-Static Pressure.

Tests with HE charges in partially vented chambers with small venting areas have shown
that for suppressive shields applied to detonation charges only, venting has no significant influence
on the maximum pressures recorded but does affect blowdown time. To calculate the charge weight-
to-volume ratio (W/V) and to determine the maximum quasi-static pressure rise, use one of the
methods given below. Note also calculated examples given below.

1. A curve developed from two sources of test data using Comp B explosives is
shown in figure 2. This data was taken in two different domains of W/V. Figure 2 implies that for
W/V<0.003, complete oxidation occurs; for W/V >0.1, the only oxidizer available is that in the
explosive itself; and for W/V between 0.003 and 0.1, partial oxidation results (Ref 28). Because of
insufficient experimental data in the partial oxidation regime, it is impossible to accurately predict
quasi-static pressure in that range.

2. A conservative calculation for the quasi-static pressure is given by:

0.72
_ w\™
Pos —2410<.\7)

This curve (taken from figure 4-65, TM 5-1300) is based on TNT and assumes complete
energy conversion.

Example (PQ g calculation)
For

€
[

201b Comp B

<
I

6458 ft3
W/V = 20/6458 = .0031 (from figure 2) Pog = 33 psi.
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Figure 2. Quasi-Static Pressure Rise Inside an Unvented Enclosure (Ref 28)




The TM 5-1300 equation gives

- -W_>0.72 _ .
PQS-2410(V 38 psi

This result is higher for two reasons:

1. The information provided in TM 5-1300 is based on TNT which has a higher
heat of combustion.

2. The information provided in TM 5-1300 assumes complete energy conversion.

E. Blowdown Time.

The time required for the quasi-static pressure in a suppressive shield to vent down to
ambient pressure is the blowdown time.

The procedure for calculating blowdown time is outlined below.

1. Calculate the volume of the shield, V, and PQS'

(3]

Calculate Aon¢- (See section V.)
3. Enter figure 3 with (Ayent/V) for the value of (t/Pgs 1/6y1/3y .
4. Solve for blowdown time, t.

Example (blowdown time calculation)

For
V = 6458 ft3, A = 2312 ft?, Pog = 10 psi
Ayent = 3% of total area = .03(2312) = 69.4 ft3
312 (69.4)3/2
Avent™~ _ e

\' 6458

And so
t - 3.2 msec ’
Pos 1OV (psi) 170t /31t

Or

t = 3.2(10)1/6(6458)!/3 = 87.5 msec

Therefore, 87.5 msec from detonation, the quase-static pressure will vent down to ambient pressure. .
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Figure 3. Scaled Blowdown Time for Vented Structure (Ref 28)




F. Side-on and Reflected Pressures.

Calculate scaled distance, Z = _%3 determine Pg(y by one of the following:
w

1. Goodman’s air blast data (Ref 84) (based on pentolite explosion in free air)

(S8 ]

TM 5-1300, figure 4-5 (based on TNT explosion in free air)

3. TM 5-1300, figure 4-12 (based on hemispherical TNT surface explosion which
is higher than free air due to surface reflections).

G. Impulse and Reflected Pressure Duration.

Same as above except for Goodman’s data where dimensions incorporating units of time
must be scaled, i.e.:

tg. Ig, Ig = (table value) - (W1/3)

Example (blast parameter calculations)

For

W = 5Ib TNT

R

From table 1 the pentolite equivalent weight ratio is 1.17.

10 ft

W = 5/1.17 = 4.27 Ib of pentolite is equivalent to 5 1b of TNT.

R____10 __
wl/3 — @.27)1/3

6.16

From Goodman’s data:

Ig = 23.143(4.27)!/3 = 37.6 psi-msec
Pp = 62.2 psi
tgy = 1.282(4.27)1/3 = 2,08 msec

PSO = 20.8 psi

The quasi-static pressure and reflected pressure have a combined effect on the suppressive
structure. Graphically the two pressures overlap as shown:

P
R >
SHORY DURATION (IMPULSIVE LOAD)

LONG DURATION (QUASI-STATIC LOAD)
Pos

16




Both short- and long-duration effects are taken into account in the structural response

‘ section of this handbook (Ref 85)

IV. STRUCTURAL RESPONSE.

A. Newmark’s Method.

Newmark’s method, which is a simple engineering approximation, yields a reasonable
. solution for determining the dynamic response of structures. This approach generally replaces a
given structure with a dynamically equivalent system. The load-mass factor K; ), which equates
structural elements to an ideal spring-mass system and the equivalent unit stiffness of the system K¢

are the transformation factors (Refs 35, 51, 82, 85).

The resistance of a structure is defined as the internal force tending to restore the
structure to its unloaded static position. This function approximates the real case where plastic
hinges are formed at high stress points. External work is the product of the time-dependent force
and the maximum displacement. To satisfy the law of conservation of energy, the external work
minus the internal work is equated to the change in kinetic energy.

From the equation of motion discussed above, equations have been developed for
pressure loads of long, short, and combined durations. These cases are discussed in the following
structural response calculations.

‘ B. Structural Response Calculations (Beams).
The procedure for calculating structural response is outlined below.
1. Calculate Pqg, PR, and I . (See Section III.)

2. Newmark’s method is based on an idealized triangular reflected impulse;
therefore, the idealized reflected pressure duration ta is

2
ty = 5 as shown below
Pp

3. Select a structural member and calculate its natural period of vibration, TN:
a. Use applicable equation given in table 2, or

b. Useequation 6-15 in TM 5-1300,

Kpym ) psi—ms2
TN = 27 where m = unit mass, -
KE 1n.

17




Table 2. Natural Period of Vibration for Steel Beams (Ref 51)

Member Period

' : 2 J W

/W, L:
m};/?' T~= O.9lv -;- 1

= 2f W

5,——% 042 L/ =5
=

D—‘f T,=061/ = =—
X T

4 . 4‘_ (= L
3'—‘(-}—“ =5 TN- 0.45/ — E1
"

Where:
Tn = Period, sec
W = Support weight (including beam) per unit length
Wc = Total weight concentrated at midspan
E = Modulus of elasticity
I = Moment of inertia =
g = Gravitational constant (386 in./sec*)

18




4. Calculate ultimate unit resistance, ru, using the applicable equation in table 3
where Mp, is the plastic moment capacity and is given by

Mp =FyyZ

Where F;y is the dynamic yield strength of the material (de for mild steel is 42,000 psi), and Z is
the plastic section modulus (Ref 83).
For standard I-shaped sections (S, W, and M shapes)
Z = ].15 times the elastic section modulus.
For plates or rectangular cross-section beams
Z = 1.5 times the elastic section modulus.

5. Calculate the ductility ratio, u, which is the maximum deflection, X, divided by
the elastic deflection X, (u = Xm/Xe) (Ref 85):

a. For short duration only (neglecting PQS effects)
e = T /3).
k. g td ru
b. For long duration only
P 1
QS - P
1 T (t>»TN)

Ty

c. Forshort and long duration (Ref 85).

Pr-Pos\ /Pas
T, T,

u b u =] ta < TN/3
where
(P — Pqg)
Pas
'1d T; t

6. If the u calculated above is not satisfactory, select another structural member
size and repeat steps 2 through 4 until u meets the design requirements. A guide for design criteria is
given as follows:

19
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Table 3. Ultimate Resistance and Stiffness of Beam Elements (Ref 28)

Member
And

Load Confiquration

Ultimate
Flaxural
Resistance

Equivalent
lastic
Stiffness

wb

—L 7

rybL = 8.0

Mp-

w

2 -
!

wb

Width of contributory loading area

Plastic moment capacity
Ultimate resistance per unit area
Ultimate total resistance

Load per unit area
Total concentrated load




The ductility ratio indicates if the structural members- will be reusable,

. (Ref 83, 86):

pu <1 - Elastic design.

# <3 - Reusable members, little or no permanent deformation.
3 <u <6 - Reusable members, moderate damage.

6 <p - Non-reusable, severe damage.

The maximum deflection, X,y can be determined by
Xm = #X,
where X, is the equivalent elastic deflection.
The maximum strain, €, can be determined by
€m = HE,

where ¢, is the equivalent elastic strain.

Example (structural response of an I-beam)

]

Blast loads - Pp = 5000 psi I = .38 psi-sec

PQS 250 psiand t = 0.3 sec

ty = 5— = .00015 sec

S5 I-beam -
(fixed -fixed)

14.75 Ib/ft
3.284 in.
15.2in.4
6.09 in.3

30 in.

30 X 100 psi
= 36,000 psi
de = 42,000 psi

M- wv—oc €
Wonononon

e s |
<
|

Calculate natural period of vibration, Ty -

Ty = 0.28 L2 E‘ﬁ’r where g = 386 in./sec2

0.28 (30)2 J (sl = .00067
28 30" Y G386)(30% 100)(15.2) : o=

21
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Calculate ultimate unit resistance, =
M ZF
r, = 16.0—== 16.0 —=X ‘
bL2 bL2

0 LL:15X(6.09)(42,000) " _ | <os psi
(3.284)(30)2

Determine amount of deformation past the elastic limit; u (use short-and long-duration
equation since ty = 00015< Ty /3 = .00022 and t > Ty) -

= 16

o ]
Pr ~Pos Pos
T T,
. + o = 1
TN 12@-1 I
2 y .
(5000-250)/1593 \" . [250/1593\-
00067 \2u-1 T
3.14(.00015) 2u
g 2
_2.10 + [=16_\ =
V2u-1 | =t
\ , %

441, 3w _
2u-1 2u-1

441 + 32u = 2u-1 orp = 3.22
Therefore, the maximum deflection is 3.22 times the equivalent elastic deflection and the
member would be reusable since u < 6.

Determine the maximum deflection, Xm (Ref 51)

Ry

X, ==
e KE
Where

Ultimate total resistance

Ry

Kg

Equivalent elastic stiffness
307 EI
L3

From table 3 Ru = rubL and KE

Therefore,
_ bl (15033 2843004 _ Baii
€ 307El (307)(30X100)(15.2)

X = “Xe
3.22(.03) = 0.10in.

22




Therefore, maximum deflection will be 0.06 in. and will occur at the center of the beam,

' and the maximum strain will be
Fyy 42,000

e = e = ”(T) = 3.22(W> = 0.0045 um/in.
or 4,500 pm/in

Example (interlocking I-beams).

oS3 X 57

L]

1.44" 1.44"

Blast loads - Pp = 3150 psi
PQS = 200 psi
tg = .00032 sec
S3 lI-beam - w = 5.7 Ib/ft
(fixed-fixed) b = 2.33in.
1=252in4
S = 1.68 in.3
. L = 60in.
E = 30X 105 psi
Fy = 36,000 psi
FdY - 45,000 pSi

Assume equal load distribution on inner and outer beams (Refs 85, 89):
- 16 Mp - 16 ZF yy
TP T2
16(1.15)(1.68)(45,000) _

= = 268 psi
1.44(60)2

where b’ is the effective flange width.

Ty = 0.28 LzJ E%I where g = 386 in./sec2
5.7/12)
= 0.28 (60)2 ( =,
(€0)" N G86)30x 1057 2.52) DML ves

Determine amount of deformation past the elastic limit, u (use the short-and long-
duration equation since tj = 00032< Ty/3 =.0014 and t > Ty)

2
___rl_— + ru = ]
Tn_V26-1 Tt
rté 2u

23




3150 - 200 200
268 + 268 ) -,

0041 \2u-1 -4

7(.00032) 2

7.8 | l4% _

2u-1 2u-1

7.28 + 1.49u = 2u-1 or u = 16

Determine the maximum deflection:

. - r,b'L4
¢ 307 EI
14
_ (268)(1.44)260) e
(307)(30X 100)(2.52)
Xm - “xe

16(0.22) = 3.52 in. maximum deflection

Maximum strain €, = pe,

F
) = 1o 25299) - o024
30X10

or 25,000 g in./in. .

C. Structural Response of Rings Supporting Beams (Figure 4).

The deformation of steel rings supporting cylindrical structures with interlocking or
stacked beams can be conservatively estimated by neglecting the energy absorbed in deformation of
the beams (Ref 85). The procedure for calculating structural response follows.

1. Determine the natural period of vibration for the ring and the portion of beams
it supports (Ref 85)

\
- -
TN = 27T Kg
Where K is the stiffness coefficient and
- ARE .
B 2
(Rp)
W1 = Ring and supported beam weight per circumferential in., Ib/in.
AR = Cross-sectional area of ring, in.2

Rg = Radial distance to ring centerline, in.

24
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Figure 4. Geometry of Beams and Rings in the Cylinder Wall (Ref 31)




2. Calculate the ultimate unit resistance (Ref 85)

o ZAR
4 LRy
where
0, = Circumferential stress, psi
Ry = Radius to inside wall, in. '
Lg = Length of supported portion of beams, in.

P . .9
Ap = Ring cross-sectional area, in*

3. Determine the amount of deflection past the equivalent elastic deflection, pu,
using the equation given in section IV.

<

I I
) s =] -
TN Vzl-l'l ]-,17‘-

w% .

4. If p is not satisfactory, increase the number of rings or the ring cross-sectional
area and repeat steps 1 through 3.

Example (rings supporting interlocking beams)

Suppose we have a structure, as shown in figure 7, with the following information: .
I-beams S3 X 5.7
Rings 2.25in.X5 in.
E = 29%100 psi
Wr = 9.05 1b/in.
Rgp = 71.125 in.
Ry = 67.5in.
o, = 42,000 psi
Lg = 30in.
Pp = 3150 psi
Pos = 163 psi
ty = .32 msec
Ag = 11.25in.2
- AgE
K=
(RR)
o 6
_ (11.25)(-9X’30 ) _ 64.492 psi
(71.125)~

,W
T
Ty =27V o
N Kg
_ } 9.05 _
=2 (—64,492)(386) = 3.788 msec
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_ acAR

Y LgRy
_ (42,000)(11.25) _ .
‘ (30)67.5) | 233 psi
5 .
. I
ST (i E . + Ty - |
-5
1|'td : M
3150 - 163 \? 163
233 - 233 =1
3.788!2;1-! - Al
x(.32) 2u
340 \2 s (=10 -
V2u-1 | - _5__1
2u
11.56 1.4u N
20-1 + o TTeS l orp = 21

Determine the ring deflection:

0, AR(2TRR)

. ALength — T
_ 42,000(11.25) x(142.250)

11.25(29 X 106)

£37 = 206 in. orARadius = .103 in. at the elastic limit.

T
Sincep = X /X, then X = pX,
21(.103) = 2.16in.

= .647 in. at the elastic limit.

I}

ADiameter

This means that the ring’s radius will increase by 2.16 in. if the ends of the beams are not
supported.

D. Dynamic Shear.

The procedure for calculating the dynamic shear is given below.

1. Calculate the time of maximum deﬂection,tm(Ref 51)

!
: - ZPRlg
m ru - PQS
It is assumed that the maximum shear occurs when the beam reaches maximum

deflection (Refs 51, 86) ’a

2. Fort, > t& E
Pas

27




Calculate the maximum total load at the t

Pt o PosbL

’ PR
3. Fort <t] \
Pas .

N

'm t'd

Calculate the maximum total load at time, tm

ty -t
_[d " 'm

4. Calculate the maximum resistance, R of the structural member using table 3
or table 4. Calculate the dynamic reaction V using table 4. The maximum shear stress will be the
dynamic reaction divided by A, (Refs 51, 85, 86).

S. The yield capacity of steel beams in shear is
Vp = FdVAw
where Fyy; is the dynamic shear yield strength (equal to 0.55 Fiy, Ref 83) and A, is the area of

the web. For I-shaped beams and similar flexural members with thin webs, only the web area
between flange plates should be used in calculating A, .

6. As long as the dynamic reaction does not exceed V_, I-shaped sections can be
considered capable of achieving their full plastic moment. If V is greater than V_, the web area is
inadequate and either the web must be strengthened or a different section should be selected.

Example (shear calculations).

From the previous example on the structural response of an S5 I-beam with

Pp = 5000 psi
P = 250 psi
Q
ti = .00015 sec
r, = 1593 psi

Calculate the time to maximum deflection

ViPpty  '4(5000)(.00015)
m =T, -Pgg  1593-250 02 e i

! PR
since t_ > t4

Pas
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Table 4A. Dynamic Design Factors for Beams (Ref 51)

e % AR
‘' P J
r -1
Simply-Supported
| : i g
Loacding Strain Load Mass loai-tugs Yaxivun Spring Draariae
Diagram Range Factor Factor ' factor Jasistance | Conztand Rosciien _
L % i Near Ra “ v
Concen~ | Uniform | Concen- | Uniform
trated Yass trated | Mass
. UHass * | Vasg =
! 1
Pept Elastic | 0.6l | 0.50 0.78 ey, 38LEI 0+3% R~0.12F |
- b _P —_— |
= : st |
A |
F——— | pastte | o0.50 0.33 1 0.66 8, 0 0.3%R 0,12 |
T ! !
P Elastie 1 1.0 0.L9 1.0 0.L9 MP LEUT 0.73 a=0.208 I|
'l T 1’ !
LEr & | | Plastie 1 1.0 .23 1.0 |0.33 Lvp 0 0.738,-0.25F |
T ' |
= - T 3 N
¥ Elastic 0.87 I 0.76 0.52 0.87 0.6 6'.!? 56.LET 0.62 R-0.12?
rl_'Ij. £ L
b15,4 -
. -~ ?lﬂﬁtic 1 H 100 0-56 2.0 0.55 63!? (4] 0-75Rm-0.25?
[ : T

* Equal parts of the

concentrated mass ere Jumped at each concentrated lcad,
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Table 4B. Dynamic Design Factors for Beams (Ref 51)

A ¢
z Fized Ends
Loading Strain L“L/.md Yass load-liiass Yeximin Spring ' Effective Dynamic !
Diagran Range [Factor Factor Facter Reristancs |Constant Sgring Ruacticn |
Ky, K, X,,. R X - | - Comeiant v
Concen- Uniferm [Conzen-iniform ' = ) {
trated | lfass (trated | Yass | ElesticlPiasedc ! :
¥nss* Vass* | i !
— . !
o ;8151 | 26h 51 |307 BT | 5
Elastio| 0.53 0.l 0.77 T “'J‘" — | - 50.363’0.2.'4? |
{ Papl } S 7 I 17 i :
T S
. L U ' = 22
! . Pla 8 LET
ety | B 0.8 0.50 0.78 |30, v, ) BEJ_ Yp— 0.393+0.117
A H .
. i '
H e
Plestic| O. . X o, +¥ 104388 +G.22F
c S0 [ 0.33 ! 0.66 E( s ¥pat| © io 387 _+0.02: :
7 : i
p ] . ) . !
| - Elastic| 1 1.0 0.37 1.0 | 0.37 ;“,?,_ollp“; 152EY "0.J18-0.21
/ ‘f C g : l
LR l i ¢ X , § |
¢ L4 4 \ .oy !
7 T Plastioe 1' 1.0 0.33 1.0 0.32 L(L ?J+MP=) C !O.’{SRE‘ J425P |
'
}
% i

Concenira’ed mass is lumcad at the

concntrated inzd.,
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Table 4C. Dynamic Design Factors for Beams (Ref 51)

ﬁ
Lo %
- ;
r Simply-Supported ’
and Fived P
Loading Strain| load Liacs Lerd-¥acss Vaxi =z Spring Effective Dynexic '
Dlagram Range | Factor! Fector Fretor Resistance [Constant Spring Rleaction '
X | K, Kp)e R, k Constunt v |
e — [y .
v oncon~- |[Uniferm | Concen-[UnZfom ke i
trated | \ass trated | Yass «
: Vausd Vass Elastia }‘luuc
P Elastic | 0.58 0.L5 0.78 | B, A |285E1/d 7, =0.26R+0,12P
< 153E1 i L A a g
AR ' . ” ; sl PO ¥,=0.L2Rs0.2¢P
v, v, o 310~ F - - Uy —"3“ - v
| L % Plastic | 06U 0«30 078 | plip ey} "5‘3’/“ e L ¥y ¥g=0.35%00. 1L
é ' R_,=
. |Prasue| 0.50 0.33 0.66 ;-‘(uyaozmh)‘ 0 mt L V,~¥,~0.38R_+0.12p
i
P Flastto| 1.0 [1.0 [odd |20 |oa3 lier s [ro7e14? ¥,-0.5kRe0.1LP
z 10,=Y V.=0.25R+0.07P
Y % |Elasto- 2 3 3 160°T g S M0al !
' ﬁ Pasa| 1 |10 o |20 |ods {Etw .ene .| usEIA S el PR USRS
L———,—L{' 6.62M; ~ .
. 2 ’ \ - oV - . i
; Plastto| 1 |10 |0.33 |1.0 |03 |fag et Y| © Rae™—T1 V,=¥,=0.75R ~0.25P |
cFf
L | g |Blastie| 0.810.67 |05 |0.83 |o.55 | e, A | w2mp V,=0.17Re0,27P |
{1 114 7.521 V,=0.33R+0,33F
4 L ¢ |Elasto- 2 : S5EY b 122F1 o
E !5 14 [ |praeete 0.87|0.76 |o0.52 |0.87 | 0.60 |2, o3 ) J_LJ-. =55 | vyevpe0-628-028
. _ : 3 ,\“_9 =52 iy 0568 b5
stic 1 |1.0 0.56 | 1.0 0.55 |p(xp,*3¥p ) wf L | " 0.56R_+ 0.13P

' -
* IEqual parts of the concentrated mass are lumped at eazh concentratad load.




= 250(3.284)(30) = 24,6301b

RTn = rubL
= (1593)(3.284)(30) = 156,942 Ib

V =03R, + 0.12P; = 62,5941b
The yield capacity is
Vp = F4yA,, where Ay, = 5(494) = 247
= 0.55 FyyAy
= 0.55 (42,000)(2.47)
Vp = 57,057 1b < 62,594 1b

Since Vp <V, the beam will not be capable of achieving its full plastic moment before
failing by shear. Select a larger beam with a yield capacity greater than 62,594 1b.

V. BLAST PRESSURE EXTERNAL TO SHIELD

The external side-on overpressure is a function of charge weight, standoff distance, shield
size, and the effective vent area ratio, a,. The procedure for calculating blast pressure follows.

1. Calculate effective vent area ratio, a,. ‘

a. Figure 5 gives equations to calculate a for a variety of vented elements.

b. From Ref 35:

1 _ 1, 1 1
g—a‘i’@‘f‘...‘!‘an

2. A curve fit to side-on pressures outside the suppressive structures is shown in
figure 6. The resulting equation is (Ref 35):

1 1.66 R0.27 0.64
R

X = width of suppressive cube or diameter of suppressive cylinder, ft
R = standoff distance from charge, ft
Z = scaled distance, ft/Ib!/3

where

This equation is valid for the following parameter ranges

293<2<21.3
0.69 < R/X <4.55
0.01 <@, <0.13
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J>W;]

M

L\/\;\«/L

n
vent tii"gi/N vent "?gi
L = length of element n = number of openings
P = projected length of angle oy ¥ LM
N = 2 or 4 (see text) & - A /A
A = LM v
wall
L = length of wall
* - vent' wall
(a) NESTED ANGLES (b) SIDE-BY-SIDF. ANGLES OR ZEES
| M =
c
- M - | 9% s f"w
1
?a. odha
1 1
n n
- La /2 A = 21 a
vent 1 v
1 1 1
n
a, = open area of louvre A = A = 247 b,
1 v \'4 n 1
2 3 i
= n
wall =t A = 247V c.
V4 1 1
a = A /A
v a = A [/A_, ..
1 v w

(c) LOUVRES

Figure 5.
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(d) INTERLOCKED I-BEAMS

Definition of Effective Area Ratio for Various Structural Elements (Ref 35)




lO_lIITl T LU B B B B O T | B N
o[ SYM. STRUCTURE REFERENCE 2 d .
. © 81 mm 14,15
a- @ 0-1 5
v 0-2
- O 0-3
4 0-4
2t © T-1
2 T-3
“ T=5
ol © CAT.Y g ¥
S ol ;
(psi) L 4
ar .
ol - ( 1 )1.66( R )0.27 ( 08)0.64_
s Z X
0 S =%19.9%
10 —
2.93<72<21.3 .
0.69 SR/X <4.55 5
6 0.01 <%, <0.13 j
| S | l 1 L1 ] ] 1
6 10—3 2 4 6 10-2 2 4
(1)1.66(3.)0.27((I 0.64 (|b0.553)
VA X e ft1'66
Figure 6. Curve Fit to Side-On Pressures Outside Suppressive Structures (Ref 35) ’
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and is valid for the following ranges

-
he resulting equation is (Ref 35):

4.

A curve fit to scaled side-on impulse outside a structure is shown in figure 7.

by . (_1-)0.98(_R_>0.008 0.45
win = 2:81z) \X &

€

2.93<2<15.0
1.L1I6KR/X<4.55
0.008<a,<0.13

For particular configurations, i.e., nested angles, perforated plates, or

interlocking I-beams, slightly more accurate curve fits and equations are presented (in Ref 35) for
Pg and Ig outside the suppressive structure.

Example (external blast pressure calculation)

Consider a 6- X 6~ ft two-layered, nested angle shield with two 30% perforated plates in

between (a = .3).

Find o,

where

t> »» M>>:|

73

n+1 = 100 (1/4-by l-in. angles)

g = .25in.
p = .7in.
N=2

M = 72 in. (total width)
L = 72 in. (total height)
I = 70 in. (angle length)

Since there is approximately one opening per projected length, p (for closer nested angles with about
two openings per projected length use N = 4).

n
Avent = I?Ei/N = 70(99)(.25)/2 = 866in2

Awall = LM = (72)(72) = 5184 in.2
@) = oq = . Avent /| Ayay = 866/5184 = .17

WS N WS T TS R
ty gty T3

& |~
2
o5

35




|

10_,r1T| T T 1 T T 1T] ' ! U
[ SYMBOL _ STRUCTURE’ .
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S B v 0-2
0.333 A b 0-3 i
W
y q 0-4 _
psi - ms . -
§ a @ T-3 _
|b0'333 [ T-5
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6 : 3
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0.98,.,0.008 0.45 /,0.327
FR () (B
Z X R ft0.98
Figure 7.

Curve Fit to Scaled Side-On Impulse Outside of Suppressive Structures (Ref 35)
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with «, =.05 and a charge weight of 2 Ib, determine the side-on pressure outside the suppressive
structure at a standoff distance of 10 ft from the charge.

i s oy bl 38
Z= - i = 754

1 1.66 R 0.27 0.64 1 1.66 10 0.27 0.64
2) ) ) =Gx) (Y (9 = o0

And from figure 6
Pg = 5 psi.
VI. FRAGMENTS.

A. Fragment Classification.

Primary fragments are pieces of the casing, container, or other structure which contain
the explosive material and which is in physical contact with the explosive. In most cases, these
fragments arrive at the suppressive shield wall prior to the shock wave.

Secondary fragments are missiles consisting of items which were not in initial physical
contact with the explosive material. These objects are accelerated by the blast wave and, due to

inertial resistance, will arrive at the suppressive shield wall behind the initial shock wave.

B. Primary Fragments.

1. Determine gurney energy constant,\/ZE', for the type of explosive material
(TM 5-1300, table 4-2).

2. Calculate initial velocity of primary fragments, Vy» using the appropriate
equation (TM 5-1300, table 4-3).

3. Determine striking velocity, VS
a. ForR<20ft Vg ~V,-

b. For R> 20 ft (refer to TM 5-1300, figure 4-74) for V, see next step for
Wr calculation.

4. Calculate primary fragment weight, W

a. For explosives with cylindrical containers, use TM 5-1300, equation 4-14
(see paragraph 4-22 for discussion of cylindrical containers).

b. W must be estimated for all other shapes.
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5. Calculate penetration depth into mild steel (Ref 13)
a. For chunky fragments (L/D = 1)
P = 112 W!/3 (.001v4/3
b. For rod or ban-like fragments (L/D > 1)
P = .112W,!/3 (001v)4/3 (1/D)5/3
The equation was developed from a series of experiments conducted within the following limits:
Fragment weights W, = .197 to .310 oz.

Fragment velocities V, = 1690 to 3775 ft/sec
Plate thickness t .125 to .375 in.

Extrapolation up to Wy=16 oz and V7200 ft/sec has been found to be in good agreement with
recent data from tests with fragment weights and velocities of this magnitude.

Example (primary fragment penetration calculation).

For 50 Ib Comp B charge encased in a spherical container, find the penetration depth into
mild steel:

Assume
W/W, = 1
—
Gurney energy constant, Y2E' = 7880 ft/sec
- v = VT Ve e
Initial fragment velocity, V, = 2E TTJWTS'W; = 6230 ft/sec

Assume striking velocity, Vg = Vo = 6230 ft/sec
Estimate maximum fragment weight, W = 0.3 oz (chunky)

Calculate penetration depth, P
P

112 Wel/3 (001 Vg#/3

112 (3)1/3 [(.001)(6230)14/3 = 86 in.
Therefore, a total mild steel thickness of 0.86 in. is required to stop all chunky fragments. If the
fragments are rod shaped, the penetration depth will increase by a factor of (L/D)S/S.

C. Secondary Fragments.

1. Calculate penetration depth as described for primary fragments. The result will
be conservative because (Ref 13):
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a. Fragment acceleration is calculated on the basis of Ig which is the highest
possible pressure.

’ b.  Assumed that Ip is acting on the side of the bar.
c¢. Assumed that the bar rotates in ﬂiéht and strikes the barrier on end.

d. Assumed that the fragment experiences no velocity decay due to
aerodynamic drag.

k 2. The secondary fragment hazard is under further study at Ballistics Research
Laboratory, Aberdeen Proving Ground, and a final report will not be available at the time of this
publication.

VII. SHIELD GROUPS.

An overview of shield groups I through 7 is given as follows:

Hazard Parameter Representative .
Shield Group Blast Pragutvitation Applications Level of Protection
psi
side-on
1 500 Severe Porcupine Melter (2000 Ib plus Reduce blast pressure at intraline
2 pour units 250 Ib each distance by 50%
b 500 Severe HE bulk (750 1b) Reduce blast pressure at intraline
Minute Melter distance by 50%
3 500 Moderate HE bulk (37 Ib) Category I hazard** at 6.2 ft
Detonators, fuzes from shield
4 200 Severe HE bulk (9 Ib) Category I hzaard** at 19 ft
Processing rounds from shield
S 50 Light 30 1b [luminant Category I hazard** at 3.7 ft
Igniter slurry mixing from shield
HE processing (1.84 Ib) o1t
tlft
6 2000 Light Laboratory, handling, and C;rfiosryhi:lgum ‘
transportation
Category I hazard** at S ft
7 200 Moderate Flame/fireball attenuation from shield

*All shield groups contain all fragments.
PeMil Std 882, 15 Jul 69 (2.3 psi level).

A detailed description of the shield groups is given on the following pages.
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Group No. 1 _"
Inside dimensions: 45 ft diameter, 40U ft'high L ‘

Weight: 5,760,000 Ib o— & —f ,

Type construction: Built-up structure using I-beams and concrete roof (w/steel liner)
Per unit cost: 84,144 man-hours, approximate $1,100,000 (est )
Charge weight (Comp B):

a. Design 2,500 Ib
b. Proof (25% overcharge) 3,125 1b

Reflected impulse:

Calculated Measured
a. Design 1685 psi-msec —
b. Proof 2022 psi-msec —
Reflected pressure:
Calculated Measured
a. Design 2728 psi o
b. Proof 3198 psi -
Quasi-static pressure:
Calculated Measured
a. Design 145 psi —
b. Proof 165 psi - -
Blowdown time (design): 2 sec with @, = 0.4% (total)

Total steel thickness (fragment stopping): 4 in.

Status: Preliminary design, not safety approved
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Group No. 2

ﬂ'

26.8' 3.7

‘ Inside dimensions: 30 ft diameter, 26.8 ft high J_ |

Weight: 1,581,840 1b

.’—33,3' e

Type construction: Built-up structure using I-beams and concrete roof (w/steel liner)
Per unit cost: 32,496 man-hours, approximate $475,000 (est)
Charge weight (Comp B):

a. Design 750 1b
b. Proof (25% overcharge) 937.5 Ib

Reflected impulse:

Calculated Measured
a. Design 1128 psi-msec —
b. Proof 1354 psi-msec —

. Reflected pressure:

Calculated Measured
a. Design 2728 psi Ce
b. Proof 3198 psi -

Quasi-static pressure:

Calculated Measured
a. Design 145 psi —
b. Proof 165 psi —

Blowdown time (design): 2 sec with o, = 0.4% (total)

Total steel thickness (fragment stopping): 2.7 in.

Status: Preliminary design, not safety approved

4]




Group No. 3 (1/4-scale Shield Group 1)

Inside dimensions: 11.25 ft diameter, 10 ft high

Weight: 90,000 1b

f— 35—

Type construction: Built-up structure using I-beams and concrete roof (w/steel liner)
Per unit cost: 5,259 man-hours, approximate $75,000
Charge weight (50-50 pentolite):

a. Design 371b
b. Proof (25% overcharge) 45.71b

Reflected impulse: (sidewall)

Calculated Measured
a. Design 414 psi-msec -
b. Proof 495 psi-msec 435 psi-mec
Reflected pressure: (sidewall)
Calculated Measured
a. Design 2728 psi -
b. Proof 3198 psi 2386
Quasi-static pressure:
Calculated Measured
a. Design 145 psi —
b. Proof 165 psi 187
Blowdown time (design): 2 sec with a, = 0.4% (total)

Total steel thickness (fragment stopping): 1 in.

Status: Safety approved.
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Group No. 4

Inside dimensions: 9.2 ft wide X 13.: ft long X 9.3 ft high
Weight: 79,159 1b

Type construction: Frame, nested angles and perforated panels.

Per unit cost: 6,500 man-hours, approximate $105,000
Charge Weight (Pentolite):

a.. Design91Ib
b. Proof (25% overcharge) 11.251b

Reflected impulse:

Calculated Measured
a. Design 162 psi-msec S
b. Proof 194 psi-msec ——
Reflected pressure:
Calculated Measured
a. Design 1387 psi -—
b. Proof 1464 psi 1143 psi
Quasi-static pressure:
Calculated Measured
a. Design 57 psi 37 psi
b.  Proof 63 psi 44 psi
Blowdown time (design): 88 msec with &, = 3.0% (total)

Total Steel thickness (fragment stopping): Maximum 2.17 in.
Minimum 1.46 in.

Status: Safety approved
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Group No. §

Inside dimensions: 10.4 ft wide X 10.4 ft long X 8.5 ft high QI

Weight: 16,772 1b ‘l

Type construction: Frame, angles, perforated plates and screens

Per unit cost: 3,174 man-hours, approximate $55,000
Charge weight (C-4):

a. Design 1.84 Ib
b. Proof (25% overcharge) 2.44 Ib

Reflected impulse:

Calculated Measured
a. Design 44 psi-msec 54 psi-msec
b. Proof 55 psi-msec 68 psi-msec
Reflected pressure:
Calculated Measured
a. Design 368 psi 242 psi
b. Proof 493 psi 346 psi
Quasi-static pressure:
Calcu]ated Measured
a. Design 24 psi 18 psi
b. Proof 29 psi 33 psi
Blowdown time (design): 44 msec with a, = 15.5% (panels).

Total steel thickness (fragment stopping): Maximum .427 in.
Minimum .125 in.

Status: Safety approved
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Group No. 6

Inside dimensions: 2 ft diameter

Weight: 1651b

Type construction: Mild steel sphere (no venting)
Per unit cost: 130 man-hours, approximate $2,500
Charge weight (50-50 pentolite)

a. Design 13.63 oz
b. Proof (25% overcharge) 17.04 oz

Reflected impulse*:

Calculated
a. Design 231 psi-msec
b. Proof 276 psi-msec
Reflected pressure*:
Calculated
a. Design 835 psi
b. Proof 926 psi
Quasi-static pressure:
Calculated
a. Design 600 psi
b. Proof 680 psi

Blowdown time (design): N/A

Total steel thickness (fragment stopping): .25 in.

Status: Safety approved

*Hydrostatic test to 1400 psi
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Group No. 7

(Final design criteria not established for Group No. 7.)

Inside dimensions:
Weight: .

Type construction:

Per unit cost: man-hours, approximate $
Charge weight ( ):
a. Design

b. Proof (25% overcharge)

Reflected impulse:

Calculated Measured

a. Design

b. Proof

Reflected pressure:
Calculated Measured

a. Design

b. Proof

Quasi-static pressure:
Calculated Measured

a. Design

b. Proof
Blowdown time (design): with o, =

Total steel thickness (fragment stopping):

Status: Unfunded
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Group No. 81 mm

. Inside dimensions: 14 ft wide X 18.7 ft long X 12.4 ft high
Weight: 50,000 Ib

Type construction: Box beams, Z-bars, and perforated plates

Per unit cost: 4,095 man-hours, approximate $80,000
Charge weight (C-4);

a. Design 6.721b
b. Proof (25% overcharge) 8.4 1b bare charge

Reflected impulse:

Calculated Measured
a. Design 97 psi-msec —
b. Proof 115 psi-msec 95 psi-msec
. Reflected pressure:
Calculated Measured
a. Design 483 psi —
b.  Proof 610 psi 379 psi
Quasi-static pressure:
Calculated Measured
a. Design 23 psi —
b. Proof 28 psi 21 psi
Blowdown time (design): 82 msec with o, = 4.3 oz (total)
- Total steel thickness (fragment stopping):

Status: Safety approved for two 81-mm mortor rounds — 4.2 1b Comp B

' Safety approval has been requested for 6.72 b of C-4 explosive based on a successful
. follow-on proof test of six 81-mm rounds.
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GLOSSARY

Side-on pressure or peak positive incident pressure, psi
Reflected pressure or peak positive normal reflected pressure, psi
Positive incident impulse, psi-msec

Positive normal reflected impulse, psi-msec

Charge weight, Ib

Radial distance from charge, ft

Scaled distance (Z = R/W1/3)

Chamber volume, fit3

Effective natural period of vibration, sec

Peak pressure of equivalent triangular loading function, psi

Ultimate unit resistance, psi

Weight of explosives container, Ib
Primary fragment weight, 1b

Initial velocity of primary fragment, fPS
Striking velocity of primary fragment, fPS
Penetration depth, in.

Duration of impulse, sec

Maximum total load, Ib

Loaded width of beam, in.

Length of beam or rod, in.

Static yield strength, psi

Dynamic yield stress, psi

Dynamic yielding shear stress, psi

Supported weight, Ib/ft
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EFF

£

Time when maximum deflection occurs, sec
Fano effective charge weight, Ib
Metal case weight, Ib

Equivalent elastic deflection, in.

Maximum deflection, in.

Ductility ratio, X, /X,

Length of the beam supported by one ring, in.
E N o)

Ring cross-sectional area. in.“

Time, sec

Quasi-static pressure, psi

Vent area of shield, ft2

Blowdown time, msec

Load-mass factor

Equivalent elastic stiffness, psi-in.
. . -

Unit mass, psi-msec</in.

Modulus of elasticity, psi

Moment of inertia, in.4

Section modulus, in.3
Gravitational constant, 386 in./sec2
Ultimate total resistance, Ib

. n 5
Web cross-sectional area, in.“
Yield capacity of a beam in shear, Ib

Vent area ratio Ayent/Awall

Effective vent area ratio

Total wall area of shield, ft2
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Diameter of rod, in.

Stiffness coefficient, psi
Cross-sectional area of ring, in.2

Radial distance to ring centerline, in.
Radial distance to inside wall, in.
Circumferential stress, psi

Length of supported portion of beams, in.
Plastic moment, capacity, in.-1b

Plastic section modulus, in3

Wall thickness, in.

Idealized reflected pressure duration, sec
Ultimate unit resistance, psi

Maximum strain, in./in.

Elastic strain, in./in.

Effective flange width, in.
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